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Introduction

● Want a method for producing the “best” lattice in some sense

● Need to have a semi-automated design method to accomplish this

● Apply standard optimization techniques to automated design method

● Outline

◆ Describe how I design and optimize FFAG lattices

◆ Give optimized lattices, showing historical progress

★ Analyze reasons behind improvements
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How to Analyze an FFAG Lattice

● Compute closed orbit as a function of energy

◆ Closed orbit, time-of-flight variation with energy

◆ Midplane symmetry: closed orbit stays in plane

● Compute the linear map about that closed orbit

◆ Betatron functions, tunes

◆ Midplane symmetry: no coupling

● Integrate through the magnet: do not use a formula!

◆ Closed orbit is not parallel to the reference orbit

● Most simple linear FFAG lattices

◆ Tune monotonically decreasing with energy

◆ Time-of-flight variation with energy well approximated by aquadratic function
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Tune Variation with Energy
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Time-of-Flight vs. Energy

10 12 14 16 18 20
Total Energy (GeV)

-1

0

1

2

3

4

5

6

7
T

im
e-

of
-F

lig
ht

 D
ev

ia
tio

n 
pe

r 
C

el
l (

ps
)

5



Determining Pipe Size

● Want round pipe that encloses the beam ellipse at every energy
◆ Beam ellipse centered on closed orbit, which lies in midplane
◆ Beta functions and emittance determine semi-axes of ellipse

● Determine circle inside which midplane-centered ellipse is inscribed
◆ Ellipsek, center at(ck, 0), semi-axesak (horizontal) andbk
◆ Circle centered at(z, 0), determine radiusr so that circle is outside ellipse but just

touching:
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Determining Pipe Size (cont.)

● Find circle enclosing all ellipses

◆ For eachz, find R(z) = max
k

rk(z)

★ For eachk, keep track of intervals over whichrk is not largest
➣ Involves intersection of quadratic functions: easy

★ Throw out ellipsek when it is not largest for allz
➣ Most ellipses thrown out quickly
➣ Algorithm becomes very fast, even for many ellipses

◆ Determine optimumz

★ Take smallestR(z); easy since piecewise quadratic
★ Optimize cost formula: in many cases, this is smallestR(z)
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Circles Enclosing Ellipses
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Edge Effects

● Want effect of magnet ends without having to know specific shape of end

● Can compute this effect exactly under the following assumptions:

◆ First order in the strength of the body field

◆ Limit as the length of the end goes to zero

● With midplane symmetry and only wanting linear effects, theanswer is

∆py = −
qypx

ps
∆By0(x)

◆ Coordinate system defined relative to pole face (x parallel to pole face)

◆ ∆By0(x) is change in midplane field (positive when entering magnet with positive

By

● Small effect for higher-energy muon machines: lots of cells

9



Modified Palmer Cost Model

Bi± = B0 ± B1fRR

Bo± = B0 ± B1Ro±

C± = Cm0B
1.5
e±Ro±(L + fEfRR)

fQ =
|Be+ + Be−|

|Be+| + |Be−|
kD +

|Be+ − Be−|

|Be+| + |Be−|
kQ

Cmag= (C+ + C−)(n0/n)1/3fAfQ/2

Ro± = fRR + tC |Bi±|

Be± =











Bi± |Bi±| > |Bo±|

Bo± |Bi±| < |Bo±|

Crf = kCV G0/G + kPV G/G0

Clin = CLLR

● CostsCmag(magnets),Crf (RF), andClin (linear)

● n magnets, magnet radius isfRR, magnet length isL, central field isB0, gradient isB1

● Total installed voltage isV , RF gradient isG, ring length isLR

● PB is our cost unit, the “Palmer Buck”

fR 1.3 tC 2 mm Cm0 22.5 mPB/T1.5/m2 fE 20

kD 1 kQ 1.5 n0 300 fA 1.5

kC 30 PB/GV kP 26.8 PB/GV G0 16 MV/m CL 25 mPB/m
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Cost Behavior

● Short magnet, depends onR2

◆ Relatively independent ofL: making magnet longer very cost effective

★ Beware:R increases weakly with increasingL
★ Note largefE

● Longer magnet, depends linearly onR

◆ May not be cost-effective to lengthen

● Optimum tends to occur whenL ≈ fEfRR

● Superconducting RF: optimum gradient is generally the highest you can achieve
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Longitudinal Dynamics

● Normalized longitudinal acceptance in scaled variables (E/∆E andωt) depends on two

dimensionless parameters

w =
V

ω∆T∆E
z =

T0
∆T

◆ ∆E = Emax− Emin

◆ ω is the angular RF frequency

◆ V is voltage per cell/turn

◆ ∆T is the height of the time-of-flight parabola for one cell/turn (difference between

maximum and minimum times-of-flight)

◆ At the energy with the shortest time-of-flight, if the particle arrives at a cavity with a

phaseφ, it arrives at the cavity in the next cell with a phaseφ − ωT0.

12



Longitudinal Dynamics (cont.)

● Largerw, larger longitudinal acceptance

◆ w > 1/24 in any case

◆ Assumes a perfectly parabolic time-of-flight dependence

● Note requiredw increases with decreasing energy

◆ Normalized longitudinal emittance required is same for allenergies

◆ ∆E smaller for lower energy machines

◆ Thus, scaled emittance is larger

● ∆T ∝ (∆E)2 for parabolic variation

◆ For givenw, V ∝ (∆E)3

● Lowering∆T increasesw and/or decreases requiredV

● Lowerω gives lowerV /largerw

● In some regimes, scaled emittance proportional tow2
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Longitudinal Dynamics: Design Tradeoffs

● ∆T per cell proportional to 1/n2, n is the number of cells

● Thus, for givenw, voltage per turn proportional to 1/n

● Magnet costs proportional ton if individual magnet costs independent ofn

◆ Do even better: highern, smaller closed orbit swing, small aperture

◆ Per-magnet costs go down with more magnets

● ∆T proportional to cell length for a given cell type
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Basic Non-Scaling FFAG Design
Principles

● Items that can vary

◆ Integrated dipole fields: (number of cells,∆T , center parabola)

◆ Integrated gradients: (tunes, beta functions, weak∆T dependence)

★ Only horizontal lattice affects∆T

◆ Magnet lengths: (pole tip fields, weak cell length dependence)

◆ 6 parameters total

● Don’t over-focus: low energy tune below 0.5.

● ∆T determined by

◆ Longitudinal acceptance (w)

◆ Available voltage per cell
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Muon Lattice Input Parameters

● 201.25 MHz superconducting RF

◆ 2 m drift needed for RF cavities: stray field from magnets

◆ 7.5 MV per cell (Cornell achieved)

● 0.5 m between magnets

● Normalized acceptance: 30 mm (acceptance times beta function is square of

half-aperture)

● Factor of 2 in energy

● w is 1/12 for 10–20 GeV, 1/8 for 5–10 GeV, 1/6 for 2.5–5 GeV
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Fixed Pole Tip Fields

● Require 7 T pole tip fields

◆ Achievable but not too crazy

● Fix low-energy tunes at 0.35

● Fix derivative of time-of-flight to be zero at central energy

● System completely determined (remaining parameter isw)

◆ w determined using low-energy time-of-flight

★ Higher than high-energy time-of-flight
★ Asymmetric because not perfectly quadratic

● Show 10–20 GeV only

● Show different lattice types
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Tune Variation with Energy
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Time-of-Flight vs. Energy
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Fix Pole Tip Fields (cont.)

Type FDF FD FODO
Cells 93 101 113
D Length (cm) 128 101 81
D Radius (cm) 8.4 6.9 8.0
F Length (cm) 45 81 60
F Radius (cm) 9.5 12.4 14.2
RF Voltage (MV) 698 758 848
c∆T (cm) 19.9 21.6 24.1
Circumference (m) 481 436 612
Magnet cost (PB) 76 69 90
RF cost (PB) 45 49 55
Linear cost (PB) 12 11 15
Total cost (PB) 134 129 161

● Triplet has shortest time-of-flight and lowest

voltage requirement

● Doublet has lowest cost

◆ Fewer magnets than triplet

● FODO does poorly

◆ Relatively long cell
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Fix Tunes, Cost Optimized

Type FDF FD FODO
Cells 108 113 127
D Length (cm) 175 137 130
D Radius (cm) 10.2 8.7 9.7
D Pole Tip (T) 4.4 4.6 4.0
F Length (cm) 118 221 213
F Radius (cm) 11.9 13.8 15.5
F Pole Tip (T) 2.4 2.3 1.9
RF Voltage (MV) 811 849 950
c∆T (cm) 23.1 24.1 27.1
Circumference (m) 768 688 941
Magnet cost (PB) 39 34 33
RF cost (PB) 53 55 62
Linear cost (PB) 19 17 24
Total cost (PB) 111 106 118

● Remove constraint on pole tip fields

● Find minimum cost varying magnet lengths

● Still 10–20 GeV, different lattices

● Pole tip fields went down

◆ Magnets were too short (cost formula): little cost

in lengthening

◆ Lower fields inF quad: less bending?

● Longer magnets lengthened cell, made voltage

slightly more

● Cost down significantly from higher pole tip fields

● FODO not so bad
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Fix Tunes, Cost Optimized (cont.)

Min Energy (GeV) 2.5 5 10
Max Energy (GeV) 5 10 20
V/ω∆T∆E 1/6 1/8 1/12
Cells 80 93 108
D Length (cm) 144 158 175
D Radius (cm) 19.0 13.8 10.2
D Pole Tip (T) 2.0 3.1 4.4
F Length (cm) 84 96 118
F Radius (cm) 18.2 14.4 11.9
F Pole Tip (T) 1.2 1.8 2.4
RF Voltage (MV) 604 695 811
c∆T (cm) 34.3 26.4 23.1
∆E/V 4.1 7.2 12.3
Circumference (m) 493 603 768
Magnet cost (PB) 25 31 39
RF cost (PB) 39 45 53
Linear cost (PB) 12 15 19
Total cost (PB) 77 91 111
Cost per GeV (PB) 30.8 18.2 11.1

● Triplet lattices, different energies

● Cost per GeV increases substantially as energy low-

ers

◆ Increasing magnet apertures

◆ IncreasingV/ω∆T∆E

◆ Number of cells decreases very slowly

● 2.5–5 GeV not cost-effective: only 4 “equivalent

turns”
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Different Tunes, Cost Optimized

Min Energy (GeV) 5 10
Max Energy (GeV) 10 20
V/ω∆T∆E 1/8 1/12
Tunes 0.3 0.35 0.4 0.3 0.35 0.4
Cells 98 90 88 115 105 102
D Length (cm) 135 161 201 150 176 215
D Radius (cm) 12.3 14.1 17.3 9.2 10.4 12.8
D Pole Tip (T) 3.2 2.9 2.5 4.6 4.3 3.7
F Length (cm) 102 107 113 125 128 136
F Radius (cm) 15.4 15.3 16.2 12.9 12.6 13.3
F Pole Tip (T) 1.6 1.6 1.6 2.2 2.2 2.1
RF Voltage (MV) 735 675 660 863 788 765
c∆T (cm) 27.9 25.6 25.0 24.5 22.4 21.8
Circumference (m) 627 607 640 805 768 803
Magnet cost (PB) 29 30 36 37 38 44
RF cost (PB) 44 40 39 52 47 46
Linear cost (PB) 16 15 16 20 19 20
Total cost (PB) 88 85 91 109 104 109

● Triplet

● Symmetrize parabola

● Add 8 empty cells for injec-

tion/extraction

● Try different low-energy tunes

● Higher tune, lower voltage

● Higher tune, D quad size rises

◆ Spike in beta at low energy

◆ More integrated quad strength

● Optimum tune in middle, 0.35

● Cost improved from before: sym-

metrized parabola
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Symmetrized Time-of-Flight Parabola
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Beta Function vs. Energy
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Fixed Tunes: Ellipses
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Tunes not Fixed, Cost Optimized

Min Energy (GeV) 5 10
Max Energy (GeV) 10 20
V/ω∆T∆E 1/8 1/12
Cells 81 95
D Length (cm) 168 188
D Radius (cm) 13.6 10.3
D Pole Tip (T) 2.7 3.8
F Length (cm) 100 124
F Radius (cm) 14.9 12.4
F Pole Tip (T) 1.8 2.4
RF Voltage (MV) 608 713
c∆T (cm) 23.0 20.3
Circumference (m) 542 699
Magnet cost (PB) 26 34
RF cost (PB) 35 42
Linear cost (PB) 14 17
Total cost (PB) 75 93

● Don’t fix low-energy tunes

● Otherwise as before

● Cost, number of cells, circumference, voltage all down

by about 10%

● Tunes at low energy split

◆ Horizontal higher

◆ Horizontal determines time-of-flight range, so higher

better

◆ Vertical lower to avoid spike in low-energy vertical

beta function

★ Not too low: overall beta grows with lower tune

◆ Optimally share integrated quad strength
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Split Tunes
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Optimized Tunes: Beta Functions
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Optimized Tunes: Ellipses
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Conclusions

● Have a method for doing automated optimized lattice design for FFAGs

◆ Gives precise answers, linearized about exact closed orbit

◆ Great deal of flexibility (C++ code)

● Steady improvements in optimization have reduced triplet cost by 44%

◆ Use lower pole tip fields (longer magnets)

◆ Symmetrize parabola

◆ Split tunes, with horizontal higher

● ∆T and/or circumference by themselves are not sufficient figures of merit

● Doublet may do better than triplet: need to analyze

● Similar methods apply to non-muon lattices, but conclusions may be different

31


